

 deltamotion.com 1

Converting from Allen-Bradley Analog Modules
to RMC Motion Controllers

These instructions describe in detail how to convert your motion application from Allen-Bradley 1756-HYD02,
1756-M02AS, or 1756-M02AE motion modules to a Delta Motion RMC motion controller. These instructions
also reference other sources, such as the RMC Startup Guides, videos, RMCTools help topics, etc.

Contents
Overview .. 2

1. Choosing an RMC .. 3

2. Set up the Axes in the RMC ... 5

3. Communications Overview .. 7

4. Setting up the RMC for Communications ... 10

5. Setting up the PLC for Communications .. 11

6. Importing Tags from RMCTools for Cyclic I/O Data 15

7. Ladder Logic for Sending Commands .. 19

8. Using the MSG Instruction ... 20

9. PLC Motion Instructions Crossover .. 22

10. Homing ... 26

11. Registration .. 27

12. Support .. 27

A1. Addendum 1 – Example Code Functional Description 28

Allen Bradley Analog Modules to RMC Conversion

2 deltamotion.com

Overview

Feature-Complete Alternative

The RMC motion controllers have all the features required to replace the Allen-Bradley motion modules,
including:

- ±10V signal to valve or motor drive
- Feedback: Start/Stop, PWM, SSI, or Quadrature Encoder (A+,A-,B+,B-,Z+,Z-)
- Homing
- Registration
- Motion instructions including gearing, splines (cams), and more
- Easy tuning and advanced control algorithms

Connection Method

The RMC motion controllers are stand-alone controllers that communicate with the ControlLogix PLC via
EtherNet/IP.

Converting requires setting up the EtherNet/IP communication and replacing the motion instructions in the
ladder logic with code that sends motion commands to the RMC. The PLC instructions and RMC motion
commands differ, so further code modification is typically required.

Example Code

Delta Motion has provided example code for Rockwell Studio 5000 Logix Designer to assist customers with the
transition to the RMC. The example includes AOI’s that allow the new RMC code to follow a similar structure
as existing applications for the 1756-HYD02, 1756-MO2AS or 1756-MO2AE module.

For details on the example code and AOI’s, see section A1. Addendum 1 – Example Code Functional
Description.

±10V control signal

Feedback EtherNet/IP

 1. Choosing an RMC

 deltamotion.com 3

1. Choosing an RMC

To configure an RMC and request a quote, see https://deltamotion.com/rmcquote/rmcselect.php.

1. Review Requirements
Review the requirements of your existing application. Note that the Allen-Bradley modules have the
following features:

 Features (per axis)
Module Axes Output Feedback Fault

Input
Enable
Output

Home
Input

Registration
Input

HYD02 2 ±10V Start/Stop or
PWM

✔ ✔ ✔ ✔

M02AS 2 ±10V SSI ✔ ✔ ✔ ✔
M02AE 2 ±10V Quadrature

encoder
✔ ✔ ✔ ✔

Determine which of these features your application uses.

2. Choose RMC Controller
Choose an RMC motion controller based on the number of axes of control required:

If your application has: then use:
1 or 2 axes RMC75E
Up to 18 axes RMC200L
Up to 50 axes RMC200

Note: The RMC150 is an option, but Delta encourages use of the newer RMC75E and RMC200 controllers.

3. Choose RMC modules
Choose the required modules for your RMC, based on the required amount and type of I/O.
RMC75E

Required Signals: RMC75E Modules Additional I/O on Module (per axis)
±10V and Start/Stop or PWM MA1 (1 axis)

MA2 (2 axis)
Fault Input, Enable Output

±10V and SSI
±10V and Quadrature Encoder QA1 (1 axis)

QA2 (2 axis)
Fault Input, Enable Output, Home Input,
2 Registration Inputs

For more details, see:

• Products webpage: https://deltamotion.com/products/

https://deltamotion.com/rmcquote/rmcselect.php
https://deltamotion.com/products/

Allen Bradley Analog Modules to RMC Conversion

4 deltamotion.com

The RMC75E also had additional expansion modules available, such as discrete I/O, analog inputs, and
a quadrature input.

RMC200
The RMC200 Standard requires:

• Base module: B5, B7, B11, or B15
• Power supply module: PS4D or PS6D (B15 only)
• CPU40 module

The RMC200 Lite requires:
• Base module: B5L or B7L
• CPU20L module (includes built-in power supply)

Choose I/O modules to meet your requirements:

Required Signal:
RMC200 or RMC200L
Modules Additional Discrete I/O on Module

±10V

CA4 (4) 4 Fault Inputs, 4 Enable Outputs
CV8 (8) 4 Fault Inputs, 4 Enable Outputs
U14 (2) 8 I/O, individually configurable as Fault Inputs or

Enable Outputs
Start/Stop or PWM S8 (8)
SSI S8 (8)

Quadrature Encoder

QA4 (4) 8 Home Inputs, 8 Registration Inputs
U14 (2) 4 High-Speed Inputs for registration or Z

4 configurable I/O for Fault Inputs or Enable
Outputs

S8 (1 RS-422 encoder
input, no Z)

4. Verify RMC Specs

Make sure to review the datasheets of the RMC to verify the modules will meet your needs:

RMC70 Datasheet
RMC200 Datasheet

5. Request Quote
To configure an RMC and request a quote, see https://deltamotion.com/rmcquote/rmcselect.php.

https://deltamotion.com/pdf/rmc70datasheet.pdf
https://deltamotion.com/pdf/rmc200datasheet.pdf
https://deltamotion.com/rmcquote/rmcselect.php

 2. Set up the Axes in the RMC

 deltamotion.com 5

2. Set up the Axes in the RMC

The general steps for setting up, configuring, and tuning the axes is as follows:

1. Wire the RMC
The existing HYD02, M02AS, or M02AE wiring should readily connect to the RMC modules with only
slight modifications, if any. Follow the wiring diagrams in the Startup Guide or in the RMCTools online
help wiring topics:
https://deltamotion.com/support/webhelp/rmctools/#t=Wiring_and_Installation%2FWiring_Guideline
s.htm

2. Install RMCTools
The RMCTools software is available to download at no cost from Delta Motion’s download page:
https://deltamotion.com/dloads/downloads.php.

3. Start a New Project in RMCTools
After connecting your PC to the RMC via USB or Ethernet, start RMCTools. In the Startup dialog, select
Create a New Project and complete the Startup Wizard, which will lead you to go online with the RMC.

4. Define the Axes
The RMC will start with default axis definitions. You can assign the physical hardware to the internal
software axes as your application requires.
To change these definitions, do the following in RMCTools:

• In the Project tree, expand the Axes folder and double-click Axis Definitions.
• Use the dialog to view the axis definitions and change them if you would like. For more details,

click the Help button in the dialog.

5. Test the Actuator
For each axis, there may be axis parameters that need to be set for the RMC to correctly connect to the
actuator. Once they are set, you will send the Direct Output command to send a voltage to the valve or
motor and check that it moves. Refer to the Startup Guide for detailed instructions.

For more details, refer to the Startup Guide for your controller, which guides you in detail through wiring,
defining axes, and configuring axes:

• RMC70 Startup Guide
• RMC200 Startup Guide

https://deltamotion.com/support/webhelp/rmctools/#t=Wiring_and_Installation%2FWiring_Guidelines.htm
https://deltamotion.com/support/webhelp/rmctools/#t=Wiring_and_Installation%2FWiring_Guidelines.htm
https://deltamotion.com/dloads/downloads.php
https://deltamotion.com/pdf/rmc70startup.pdf
https://deltamotion.com/pdf/rmc200startup.pdf

Allen Bradley Analog Modules to RMC Conversion

6 deltamotion.com

6. Configure and test the Feedback
For each axis, there may be axis parameters that need to be set for the RMC to correctly interpret the
feedback signal. Once configured, you will again move the actuator to test the feedback. Refer to the
Startup Guide for detailed instructions.

7. Tune the Axes
Use the Tuning Tools to tune the axes. The Tuning Tools pane offers several methods for tuning:

• Auto-tuning
Use the Tuning Wizard and choose the Auto-tuning wizard. The RMC will automatically make a
move. RMCTools will determine the system model, and the Gain Calculator will open. Move the
axis back and forth while moving the slider bar to select from a range of gains, from
conservative to aggressive.

• Tuning with Existing Plot
You can use the Proportional gain to generate motion and then capture those plots of the
motion. Then, in the Tuning Wizard, choose those plots to determine a system model, then the
Gain Calculator will open. Move the axis back and forth while moving a slider bar to select from
a range of gains.

• Manually Tune
You can manually tune axis using the procedure in the RMCTools help:
https://deltamotion.com/support/webhelp/rmctools/#t=Starting_Up_the_RMC%2FTuning%2F
Tuning_a_Position_Axis.htm

Now your axes should be set up and tuned so that motion can be performed on the system. The next step is to
set up communications with the PLC so that the PLC can send motion commands to the RMC.

https://deltamotion.com/support/webhelp/rmctools/#t=Starting_Up_the_RMC%2FTuning%2FTuning_a_Position_Axis.htm
https://deltamotion.com/support/webhelp/rmctools/#t=Starting_Up_the_RMC%2FTuning%2FTuning_a_Position_Axis.htm

 3. Communications Overview

 deltamotion.com 7

3. Communications Overview

The RMC communicates with the ControlLogix via EtherNet/IP, using cyclic I/O data and also the MSG
instruction. Typically, most of the frequent communication is performed via cyclic I/O, and larger or infrequent
communications are performed with the MSG instruction.

Commands or User Programs

When communicating between a PLC and an RMC, a decision must be made as to where the motion sequence
logic is performed. There are two main methods:

• PLC Handles Motion Sequencing
The motion sequencing is in the PLC, and the PLC sends motion commands to the axes in the RMC. The
advantages are that the motion logic can easily be viewed in the PLC, and when converting from Allen
Bradely 1756 analog modules, this method likely requires less changes.

• RMC User Programs Handle Motion Sequencing
The motion sequencing is in the RMC user programs and the user programs send the motion
commands to the axes. In this situation, the PLC would start user programs in the RMC, either by
sending a command to start a user program, or by writing to a variable that triggers a user program to
start. The advantages are that the user programs respond at the loop time of the RMC (typically 1
msec), without a communication delay, and that the PLC can be offloaded, meaning less logic in the
PLC.

These two methods can also be used together.

Recommended Method for Allen Bradely Analog Module Conversion
When converting from the Allen Bradely 1756 analog modules to an RMC, the conversion process will likely be
simpler if the PLC sends motion commands to the RMC, since logic already does so for the 1756 analog
modules. Any motion that needs to respond quickly to motion events may need to be placed in the RMC user
programs.

For more details, see:

• ControlLogix to RMC Communication Video: deltamotion.com/controllogixvideo
• ControlLogix to RMC Communication Step-by-Step Instructions:

www.deltamotion.com/controllogixtormc
• RMCTools Help Topic: EtherNet/IP Overview

http://deltamotion.com/controllogixvideo
http://www.deltamotion.com/controllogixtormc
https://deltamotion.com/support/webhelp/rmctools/#t=Communications%2FEthernet%2FSupported_Protocols%2FEtherNetIP%2FEtherNet_IP.htm

Allen Bradley Analog Modules to RMC Conversion

8 deltamotion.com

Cyclic I/O Basics

Cyclic I/O is useful for data that is communicated frequently. It is not intended for large data transfers or
infrequently communicated data.

As shown in the image below, the cyclic I/O operates as follows:

• The PLC’s incoming data, which appears in the :I array in the PLC, is continuously received from the
RMC at the specified requested packet interval (RPI). Typical RPI’s are 10 or 20 milliseconds.

• The PLC’s outgoing data, which appears in the :O array in the PLC, is continuously sent to the RMC at
the same specified RPI.

• The RMC’s Consumed Data is not applied to the data in the RMC until the Sync register value changes.
This makes it easy in the PLC logic to build up the data, and when it is ready to send, simply change the
Sync Out value (the first array item). This ensures the data is applied simultaneously in the RMC. Notice
that if multiple I/O connections are used, each connection will have its own Sync register, and the data
between connections is not guaranteed to be applied simultaneously.

• When the PLC’s Sync Out value is changed, the RMC not only applies the data, but also echoes the Sync
value back to the PLC. This allows the PLC ladder logic to know when the data has been applied, so that
it can proceed to the next logic operations.

• The user defines the Data in RMC that is communicated. The Produced Data is usually status
information and comes from the Indirect Data Map, where the user can enter any data tags from the
RMC as explained below. The Consumed Data is usually for commanding the RMC and typically goes to
the Command Area or the Indirect Data Map. The options for Data in RMC are explained in the Cyclic
I/O Data in the RMC section below.

RMC PLC

 3. Communications Overview

 deltamotion.com 9

Cyclic I/O Data in the RMC

The user must define which registers will be communicated in the cyclic I/O.

• Produced Data
Produced data is sent from the RMC to the PLC. It is typically status information, such as Target
Positions, Actual Positions, Status bits, and Error Bits.
To choose which registers to include in the Produced Data:

o In RMCTools, in Project View, double-click Address Maps, then choose the Indirect Data Map.

o In the first row, click in the Map To cell, the click the button.
o Browse to the desired tag, click it then click Add. Or, press the spacebar to add the tag and

automatically select the next tag.
o If your application has multiple axes, use the Duplicate for Axes button to quickly add the same

tags for many axes.

• Consumed Data
Consumed data is sent from the PLC to the RMC. It is typically command registers or variables. If the
data is commands, the Consumed Data can directly point to the command area. If the data is variables
or other registers, then choose a section of the Indirect Data Map for the consumed data, and add the
variables and possible other registers to the area of the Indirect Data Map, in the same way as
described above for produced data.

Allen Bradley Analog Modules to RMC Conversion

10 deltamotion.com

4. Setting up the RMC for Communications

For Allen-Bradley analog module conversions, you will likely want to set the produced and consumed cyclic
data as follows:

Produced Data: Indirect Data Map, starting with item 0
Consumed Data: Command Area, starting with Axis 0 command

This will allow the PLC to send commands to the RMC, similarly to how the PLC sends motion instructions to
the HYD02, M02AS, and M02AE. The PLC will also receive status data from the RMC.

Note: For RMC200 applications with many axes, you may need to use multiple I/O connections to fit all the
data. Take special care, as the data in each connection is not guaranteed to arrive at the same time as the
other connections.

Configuring the Ethernet IP Address

1. In the RMCTools project tree, expand Modules and double-click the RMC (CPU) module.

2. On the Ethernet page, set the IP address.

Configuring the EtherNet/IP Properties

1. In the RMCTools project tree, expand Modules and double-click the RMC (CPU) module.

2. On the EtherNet/IP page, select the following options:
• Outgoing Data:

o RMC75E: %MD18.0 (Indirect Data Item 0)
o RMC200: %MD8.0 (Indirect Data Item 0)

For large RMC200 applications, you may need to fill out the other connections also.
• Incoming Data:

o RMC75E: %MD25.0 (Axis 0 Command)
o RMC200: %MD16.0 (Axis 0 Command)

For large RMC200 applications, you may need to fill out the other connections also.
• Make sure Use a Sync Register

is checked.

3. Click OK. The settings will be
applied to the controller.

Example:

 3. Communications Overview

 deltamotion.com 11

5. Setting up the PLC for Communications

You will add the RMC to the ControlLogix I/O Configuration and verify that the communications works. Later,
you will export tags from the RMC and import them into the PLC to make the data more readable.

1. Start Studio 5000. Stay offline until you have completed the I/O Configuration described below.

2. In Studio 5000, on the Tools menu, click EDS Hardware Installation Tool.

3. Click Next, choose Register an EDS file and click Next.

4. Browse to C:\Program Files\RMCTools\EDS and choose the most recent version EDS file for your RMC
and click Open.

5. Complete the wizard.

6. In the Controller Organizer window, at the bottom of the
list, right-click Ethernet and choose New Module.

7. In the list, search for RMC. Choose your RMC. Make sure to
choose the one that is keyable. Click Create.

Example:

Allen Bradley Analog Modules to RMC Conversion

12 deltamotion.com

8. In the New Module dialog, enter a Name (hereafter referred to as [your RMC name]) and IP Address as
shown below, then click Change.

9. In the Module Definition dialog, in the
Size area, choose REAL.

10. Set the Input to the number of items you entered in the
Indirect Data Map, plus one for the Sync Register. For
example, if you have 18 items, enter 19.

11. Set the Output to the number of axes you want to send
command to, times 10, plus one for the Sync Register. For
example, for 3 axes, enter 31.

Note: For RMC200 applications with many axes, you may need to
use multiple I/O connections to fit all the data. Fill out the Input
and Output boxes for each connection you will be using.
Remember that the data in each connection is not guaranteed to
arrive at the same time as the other connections.

12. Click OK.

13. On the Connection tab, set the Requested
Packet Interval to the desired value, such as
20 milliseconds, then click OK.

14. Close the New Module dialog.

 3. Communications Overview

 deltamotion.com 13

15. Download to the PLC and go online.

16. The I/O connection should now be established automatically between the RMC and PLC.

17. Verify that the I/O connection is established by checking the following items:

a. In Studio 5000, the your RMC node under I/O Configuration should not have a warning shield
next to it.

b. On the RMC, the Net LED should be solid green.

c. In RMCTools, in the Event Log, you will see that the I/O connection was established.

d. In RMCTools, on the Controller menu, choose View Communication Statistics. On the
EtherNet/IP Diagnostics page, you will see information on the CIP I/O connection.

Verifying the Cyclic Input Data from the RMC

To verify that the PLC is receiving cyclic data from the RMC:

1. In Studio 5000, open Controller Tags, and select the Monitor Tags tab.

2. Expand the [your RMC name]:I tag and the [your RMC name]:I.Data array under it. This array shows all
the data coming from the RMC.

3. In RMCTools, open the Indirect Data Map. Compare the Indirect Data Map register values in the
Current column with the MyRMC:I.Data array. You should see the same values, but notice that the
MyRMC:I.Data registers are shifted down by one register because the first register, item .Data[0], is
the Sync Register.

Allen Bradley Analog Modules to RMC Conversion

14 deltamotion.com

Verifying the Cyclic Output Data to the RMC

The PLC’s cyclic output data, as set up according to the instructions above, goes to the RMC’s command area.
To verify that this is working:

1. In Studio 5000, in Controller Tags on the Monitor Tags tab, expand the [your RMC name]:O.Data tag.

Array element .Data[0] is the Sync Register. The command area for each axis is 10 elements, so Axis 0
command starts at element 1, Axis 1 starts at element 11, and so on.

2. First, make sure that it is safe to send commands to the axis, even erroneous commands if there is
some problem with the communications. Setting the RMC’s axis in simulate mode may be useful.

3. Enter an RMC command number and its parameters, starting at array element 1 for Axis 0. For
example, the following values would be a Move Absolute (20) command, where 20.0 is the number for
the Move Absolute and the values that follow are the command parameters:

These values are now in the PLC and are being sent to the RMC each RPI. However, the RMC will not
apply them until the Sync Value is changed.

4. Change the value of the first item in the array, which is the Sync value. This will cause the RMC to apply
the data, and the RMC will execute the command.

5. In RMCTools, open the Event Log and review the latest entries. You should see where the Sync value
changed and all the values of the PLC’s output data at that moment.

 6. Importing Tags from RMCTools for Cyclic I/O Data

 deltamotion.com 15

6. Importing Tags from RMCTools for Cyclic I/O Data

RMCTools is able to export tags that can be imported to the ControlLogix. This will provide readable tag names
for the I/O data, including names for the individual bits of the Status and Error Bits. The export/import will also
include three rungs of ladder logic to simplify the Sync register. This logic is not required to be used, but may
be helpful. Make sure you have first set up the communications in the RMC and PLC, as described above.

Exporting the Tags from RMCTools

1. Before starting, make sure to have the following information:
a. The name of the RMC as entered in your Logix Designer project.
b. If using the RMC200, the number of I/O connections.
c. The number of PLC Input Data registers (not including the Sync register).
d. The number of PLC Output Data registers (not including the Sync register).

2. In RMCTools, in the Project pane, expand the Modules folder and double click the CPU module.

3. On the EtherNet/IP page, click Export to Logix Designer then click OK.

Allen Bradley Analog Modules to RMC Conversion

16 deltamotion.com

4. In the RMC I/O Module Name in Logix Designer box, type the name of the RMC exactly as entered in
your Logix Designer project ([your RMC name]), then click Next.

5. Enter the number of incoming and outgoing data registers not including the sync register, then click
Next.

 6. Importing Tags from RMCTools for Cyclic I/O Data

 deltamotion.com 17

6. Review the information and click Next.

7. Click Browse to browse to a location to save the exported file (such as the desktop) and click Next.

8. Review the location and name of the saved file, review the Next Steps section, then click Finish.

Importing the RMCTools Tags to ControlLogix

1. In Studio 5000, go offline.

2. In the desired location in the ladder logic, do the following:

a. Right-click a rung and choose Import Rungs.

b. Browse to the file that you saved earlier and click Import.

c. In the Import Configuration window, click OK to accept defaults.

3. Review the controller tags that were added:

• [your RMC name]In
• [your RMC name]Out
• [your RMC name]SendReq
• [your RMC name]Busy

Allen Bradley Analog Modules to RMC Conversion

18 deltamotion.com

4. In the Controller Organizer, expand Assets, Data Types, then User Defined. Review the User-Defined
Data Types that were added by the import:

• RMC_IN_DATA
• RMC_OUT_DATA
• RMC_STATUS_BITS

5. Review the ladder rungs that were added:

Rung 1: Continuously copies the data from [your RMC name]:I into [your RMC name]In

Rungs 2 and 3: Handles writing the data from [your RMC name]Out to [your RMC name]:0 when
requested and updating the Sync Registers accordingly.

6. Download the project to the PLC and make sure it is in Run mode.

7. Verify that the [your RMC name]In tag shows that same data as in the RMCTools Indirect Data Map,
Current column.

8. To verify sending commands with the [your RMC name]Out tag:

a. Enter a command number and parameters into the [your RMC name]Out tag.

b. Set RMCSendReq to 1.

9. In the RMCTools Event Log, you should see that an EtherNet/IP request was made, and the command
was issued.

 7. Ladder Logic for Sending Commands

 deltamotion.com 19

7. Ladder Logic for Sending Commands

In order to send commands to the RMC via cyclic I/O, with the PLC’s output data going to the RMC’s command
area, the ladder logic must populate the [your RMC name]Out tag with the commands and command
parameters. Delta suggests using the logic described below. Parts of it are included when importing tags from
RMCTools (described in section 6 above), such as the SendReq and SendBusy bits, and logic to handle the Sync
register.

1. Throughout the ladder logic, when the code is to send a command to an axis, it populates the correct
area in the [your RMC name]Out tag.

2. Toward the end of the ladder, check to see if any of the [your RMC name]Out tag is non-zero. If it is
non-zero, set the [your RMC name]SendReq bit.

3. In some following rung, if the SendReq bit is on, apply the data to the RMC by doing the following:
a. Check that the [your RMC name]Busy bit is off and the SyncIn and SyncOut match. If either of

these conditions are not true, it would mean a transaction is in process.
b. If no transaction is in process, set the [your RMC name]Busy bit to indicate that a transaction is

in process.
c. Copy [your RMC name]Out to the [your RMC name]:O tag with the CPS instruction, which

guarantees the data is copied all at once, and that subsequent logic operations related to that
copy will occur after the data is all copied.

d. Clear the [your RMC name]Out tag.
e. Change the Sync out by incrementing it by one, and modulo it so that it doesn’t overflow.
f. Wait for the SyncIn and SyncOut to match, which means the RMC has applied the data and

echoed the changed Sync value.
g. Clear the Busy bit.

This method makes it fairly easy to send commands, as any part of the ladder that wishes to send a command
simply populates the Out tag. The synchronizing logic toward the end of the ladder takes care of making sure
the data is applied to the RMC and data that was sent is properly cleared in preparation for future send
requests.

The cyclic I/O Requested Packet Interval (RPI) will define the communications delay. If the delay is too long for
your application, use a shorter RPI, or consider writing some motion sequences in the RMC user programs.

If you decide to heavily use user programs in the RMC, you may wish to trigger them by writing to variables
instead of sending motion commands from the PLC, so your logic may be different than described here.

Allen Bradley Analog Modules to RMC Conversion

20 deltamotion.com

8. Using the MSG Instruction

Use the MSG instruction for large or infrequent communications, such as writing curve data or occasionally
writing to an individual axis parameter.

Address Format

The MSG instruction requires using the DF1 address format for registers in the RMC. The RMC supports the F
or L register types, for example L8:0 or F56:0. See the DF1 Addressing help topic for more details.

In the RMC200, not all registers have DF1 addresses. For those that do not, the user can assign DF1 addresses.
All registers in the RMC75E have DF1 addresses. To find DF1 addresses of RMC registers, see the DF1 Address
Map help topic.

You can access any DF1-addressed register in the RMC as an L or F type. If the PLC must convert the data type
of any RMC data (such as when reading a block of mixed-type data), use the COP instruction, which preserves
all the bits in the data and just interprets it as the desired data type.

Configuring the MSG Instruction

To configure the ControlLogix MSG instruction for reading from or writing to the RMC:

1. Right-click the tag box "?" and choose NewTag.

2. Type a name in the Name field.

3. Make sure the Data Type is MESSAGE and the Scope is at the controller level.

4. Click Create.

5. In the MSG instruction, click the … button. The Message Configuration dialog will open.

6. On the Configuration tab, enter the following:

a. Message Type: PLC-5 Typed Read or PLC-5 Typed Write.

b. Reads:
Source Element: Enter the address in DF1 format of the first RMC register you want to read.

https://deltamotion.com/support/webhelp/rmctools/#t=Communications%2FUsing_Master_Controllers%2FAllen-Bradley_Controllers.htm
https://deltamotion.com/support/webhelp/rmctools/#t=Registers%2FAddress_Formats%2FAddressing_DF1.htm
https://deltamotion.com/support/webhelp/rmctools/#t=Communications%2FAddress_Maps%2FAddress_Map_DF1.htm
https://deltamotion.com/support/webhelp/rmctools/#t=Communications%2FAddress_Maps%2FAddress_Map_DF1.htm

 7. Ladder Logic for Sending Commands

 deltamotion.com 21

Destination Element: Enter the tag in the ControlLogix or CompactLogix into which you want to
read the RMC data. The MSG instruction requires an array. UDT tags are not supported.

c. Writes:
Source Element: Enter the tag in the ControlLogix or CompactLogix that you want to send to
the RMC. The MSG instruction requires an array. UDT tags are not supported.
Destination Element: Enter the address in DF1 format of the first RMC register you want to
write. See the Registers Maps for help on addresses.

d. Number of Elements: Enter the number of RMC registers to read or write in this field.

7. On the Communication tab, enter the Path as the RMC name as it appears in the I/O Configuration in
the Controller Organizer.

8. Click OK.

Using the MSG Instruction

The Allen-Bradley MSG instruction may take multiple ladder scans to initialize. Therefore, it is important to
enable the MSG block for the correct amount of time. Specifically, the MSG block must be energized until the
message control's enable (EN) bit turns on. Following the ladder samples to ensure proper functionality:

Read or Write Once

This sample takes care to keep the MSG block energized until the MSG block starts, as indicated by the enable
(EN) bit turning on. Once this happens, the application-controlled MSG_Trigger bit should be turned off to
ensure only a single read or write occurrs. The message control's Done (DN) or Error (ER) bits can be used to
process the results of the transaction.

mk:@MSITStore:C:%5CProgram%20Files%5CRMCTools%5CRMCTools.chm::/Registers/Registers_Overview.htm
Mike Dodds
I replaced this image.

Allen Bradley Analog Modules to RMC Conversion

22 deltamotion.com

9. PLC Motion Instructions Crossover

This section explains which RMC commands to use in place of common ControlLogix motion instructions. For
details on each RMC command, see the RMCTools help:
https://deltamotion.com/support/webhelp/rmctools/#t=Command_Reference%2FCommand_List.htm.

For information on motion other than the common instructions listed here, refer to the RMCTools help, or
contact Delta Motion.

Motion States Overview

The axis motion states in the RMC differ from the Logix 5000. The RMC states are as follows:

Disabled Axis State
The Enabled axis status bit indicates the state of the axis.

RMC75/RMC150: Motion commands other than Direct Output (9) are not allowed.
RMC200: No motion commands are allowed.

The axis can become disabled in the following ways:

• When the axis starts up and the RMC is not configured to start in Run mode.
• Enable/Disable Axis (97) command.
• RMC200 Only:

o A Disable Axis AutoStop.
o Faulting the entire controller. Disable all axes and the controller state is disabled.

Enabled Axis State

In the Enabled state, when a position command is sent, the axis will automatically change to the state
required, whether open-loop or closed-loop.

The axis can be enabled in the following ways:

• Enable/Disable Axis (97) command: enable the axis to which the command was sent.
• Enable Controller (7) command: enables all axes. The RMC200 has an option to not enable all axes

when the controller is enabled.
• The controller enters Run mode. Notice that the controller can be configured to start up in Run mode,

in which case all axes will be enabled as well.

https://deltamotion.com/support/webhelp/rmctools/#t=Command_Reference%2FCommand_List.htm
https://deltamotion.com/support/webhelp/rmctools/index.htm#t=Help_Overview.htm

 9. PLC Motion Instructions Crossover

 deltamotion.com 23

Axis Halts

After an axis halts, then normally, any motion command is allowed. If the axis halted due to an AutoStop that
was triggered by an Error bit turning on, then as long as the underlying error condition has gone away, the
command will be accepted. If the error condition persists, it must be resolved before motion commands will
be allowed.

The RMC200 AutoStops have a Disable Axis option. If the RMC200 axis is disabled, it must first be enabled
before any motion commands are allowed.

Run/Program Mode

The Run/Program mode state does not affect axis states. All motion can be performed in either state. The
Run/Program refers to user programs. User programs can only run when the controller is in Run mode.

MASD – Motion Axis Shutdown

The MASD is similar to disabling an axis in the RMC. Notice in the RMC75 and RMC150, the Direct Output
command is still allowed in the disabled state.

To disable an axis:

RMC75/RMC150: Use the Enable/Disable Axis (97) command

RMC200: Use the Enable/Disable Axis (97) command or the Fault Controller (8) command. All axes will
be disabled.

MASR – Motion Axis Shutdown Reset

The MASR is similar to enabling an axis in the RMC. To enable the axes, use the Controller (7) command or the
Enable/Disable Axis (97) command, or enter Run mode.

MAFR – Motion Axis Fault Reset

In the RMC, it is usually not necessary to specifically reset the axis after an error halts the axis, except in the
case of a Disable Axis Autostop on the RMC200, in which case the axis must first be enabled. Normally, any
motion command will clear all the axis Error bits whose underlying error condition no longer exists, and the
motion command will be processed as long as no underlying error conditions exist.
Error bits are latched and may be on even though the underlying error condition no longer exists. To clear
error bits without sending a motion command, use the Clear Faults (4) command In the RMC.

Allen Bradley Analog Modules to RMC Conversion

24 deltamotion.com

MSO – Motion Servo On

The MSO instruction enables the servo loop so that it is on in closed-loop control. In the RMC, a command like
the MSO is not necessary. As long as the axis is enabled, and no errors conditions exist, any motion command
can be issued to put the axis in closed-loop control. To put the axis into closed-loop control and hold the
current position, use the Hold Current Position (5) command.

MSF – Motion Servo Off

To turn the servo loop off, send the Open Loop Rate (10) or Direct Output (9) command to put the axis in open
loop. The Direct Output (9) command puts the axis in a state where it ignores any errors and is recommended
to be used only during machine setup.

MDO – Motion Direct Drive On

The MDO instruction sets the servo output voltage in open loop. The Open Loop Rate (10) and Direct Output
(9) commands are similar to the MDO instruction. Both commands send an open loop voltage or percent
output. During normal operation, you would typically use the Open Loop Rate (10) command, because the axis
halts will operate normally. The Direct Output (9) command ignores all errors on the axis and should be used
during setup only.

MDF – Motion Direct Drive Off

The MDF instruction sets the servo output voltage to the output offset voltage. To achieve similar behavior,
use the Open Loop Rate (10) or Direct Output (9) command with a zero voltage or percentage output.

MAM – Motion Axis Move

Use the following commands based on the type of motion:

Point-to-point absolute move: Move Absolute (20)
Point-to-point relative move: Move Relative (21)
Gearing offset: Phasing (34)
Camming (curve) master offset: you generally need to resend the curve command with the new master offset

MAS – Motion Axis Stop

Use the Stop (Closed Loop) (6) command. Notice that this stops the position motion in closed-loop control,
regardless of what motion was running, whereas the MAS can specify which type of position motion to stop.

Mike Dodds
I typically use the Enable/Disable Axis (97) command for this function

Mike Dodds
I typically use the Enable/Disable Axis (97) command for this function

 9. PLC Motion Instructions Crossover

 deltamotion.com 25

MAH – Motion Axis Home

See the Homing section below.

MAJ – Motion Axis Jog

To jog the axis, you must send the Move Absolute (20) command to start the move, then send the Stop
(Closed Loop) (6) command to stop the axis.

MAG – Motion Axis Gear

There are many types of gearing commands in the RMC. See the RMCTools Gearing help topic.

MCCP – Motion Calculate Cam Profile

Similar to the Curve Add (82) command. Curves in the RMC are different than the Logix 5000. See the
RMCTools Curves Overview help topic.

MAPC and MATC – Motion Axis Position Cam and Motion Axis Time Cam

Similar to the Curve Start Advanced (88) command. Curves in the RMC are different than the Logix 5000. See
the RMCTools Curves Overview help topic.

https://deltamotion.com/support/webhelp/rmctools/#t=Controller_Features%2FMotion%2FGearing_Overview.htm
https://deltamotion.com/support/webhelp/rmctools/#t=Controller_Features%2FMotion%2FCams_and_Splines%2FCurves_Overview.htm
https://deltamotion.com/support/webhelp/rmctools/#t=Controller_Features%2FMotion%2FCams_and_Splines%2FCurves_Overview.htm

Allen Bradley Analog Modules to RMC Conversion

26 deltamotion.com

10. Homing

Note: The HYD02 and M02AS modules support absolute position feedback types, so homing is normally not
necessary. Adjusting the Actual Position can be done with the Set Actual Position (48) or Offset Position (47)
commands.

The M02AE encoder feedback is incremental and requires homing. The RMC supports homing for quadrature
encoder feedback based on a Home input, the Z input, or a combination thereof.

To home with the RMC:

1. Arm the Home
Send the Arm Home (50) command to arm the home. In this command, you will specify the Home
Position, Trigger Type, Repeat Mode, and which input to use.

2. Move the Axis Until it Homes
You will need to send a motion command to move the axis. For complex homing sequences, you can
write a user program to perform the homing. The PLC would send the Start Task (90) command to the
RMC to start the user program for the homing.

When the home has occurred, the Home Latched axis status bit will be set and the Home Armed axis status bit
will be set. If the Repeat Mode parameter was set to Repeat, both the Home Latched and the Home
Armed status bits will remain set. These status bits can be used in a user program to check that the home has
occurred. The Home Input status bit also shows the current state of the home input.

For more details, see:

• RMCTools Homing help topic

https://deltamotion.com/support/webhelp/rmctools/Registers/Register_Descriptions/Axis_Status_Registers/Home_Registration/Status_Encoder.htm#Home%20Latched
https://deltamotion.com/support/webhelp/rmctools/Registers/Register_Descriptions/Axis_Status_Registers/Home_Registration/Status_Encoder.htm#Home%20Armed
https://deltamotion.com/support/webhelp/rmctools/Registers/Register_Descriptions/Axis_Status_Registers/Home_Registration/Status_Encoder.htm#Home%20Latched
https://deltamotion.com/support/webhelp/rmctools/Registers/Register_Descriptions/Axis_Status_Registers/Home_Registration/Status_Encoder.htm#Home%20Armed
https://deltamotion.com/support/webhelp/rmctools/Registers/Register_Descriptions/Axis_Status_Registers/Home_Registration/Status_Encoder.htm#Home%20Armed
https://deltamotion.com/support/webhelp/rmctools/Registers/Register_Descriptions/Axis_Status_Registers/Home_Registration/Status_Encoder.htm#Home%20Input

 11. Registration

 deltamotion.com 27

11. Registration

The RMC supports high-speed registration for quadrature encoder inputs. For each input, two registration
values can be stored.

To perform registration with the RMC:

1. Arm the Registration
Send the Arm Registration (52) command to arm the home. In this command, you will specify the
Registration Number, Registration Input, and Registration Edge.

2. Wait for Registration to Occur
If the registration is armed and a registration trigger occurs, the following is done:

• The corresponding latched axis status bit will be set (Registration 0 Latched or Registration 1
Latched).

• The corresponding armed status bit will be cleared (Registration 0 Armed or Registration 1
Armed).

• The latched position is reported in the Registration 0 Position or Registration 1 Position status
register.

12. Support

For assistance with converting from the Allen-Bradley analog modules to an RMC, contact Delta Motion at +1
360-254-8688 or www.deltamotion.com

For more details, see:

• RMCTools Registration help topic

http://www.deltamotion.com/
https://deltamotion.com/support/webhelp/rmctools/#t=Controller_Features%2FGeneral%2FHoming.htm

Allen Bradley Analog Modules to RMC Conversion

28 deltamotion.com

A1. Addendum 1 – Example Code Functional Description

To assist conversion to the RMC, example Studio 5000 Logix Designer code is available on Delta Motion’s
forum. This addendum explains from a functional view how the example code is intended to be used.

Example overview

The example code is provided based on the understanding that there will be existing code, previously written
to communicate with a 1756-HYD02, 1756-MO2AS or 1756-MO2AE module. The existing code will need to be
modified in order to replace the 1756 modules with an RMC.

This fully functional code demonstrates both a typical HYD02 implementation and a fully functional RMC
implementation. This makes it easy for the customer to see how a conversion can be done. The code also
includes AOI’s that allow the new RMC code to follow a similar structure as existing HYD02/M02As/M02AE
code.

The example code consists of the following program files:

• HYD02_to_RMC_Example.rmcproj RMC Project File
• HYD02 to RMC Example - AOI.ACD PLC Project File

For details on each RMC command used in the example, see the RMCTools help:
https://deltamotion.com/support/webhelp/rmctools/#t=Command_Reference%2FCommand_List.htm.

For information on motion other than the common instructions listed here, refer to the RMCTools help, or
contact Delta Motion.

https://deltamotion.com/support/webhelp/rmctools/#t=Command_Reference%2FCommand_List.htm
https://deltamotion.com/support/webhelp/rmctools/index.htm#t=Help_Overview.htm

 A1. Addendum 1 – Example Code Functional Description

 deltamotion.com 29

Hardware

The example was created using a functioning demo system. While the user will not have this hardware, it is
useful to have an understanding of the system configuration in order to understand the code.

The hardware consisted of the following:

• ControlLogix PLC; 1756-L71 Ver 35.011
• RMC200; R200-B5 R200-PS4D R200-CPU40 R2-KL004 (1) R200-S8 (1) R200-A8 (1) R200-CV8
• Position Simulator with Bar Graph; RMC-SS2-PE2-BG2

This hardware demonstrated that the control output (+/- 10Vdc) from either the PLC HYD02 module or the
RMC200 controlled the 2-axis position system simulator in the same manner. The cables from either the PLC
or the RMC were connected, depending on which control was selected within the PLC code described below.

Simulator w/ Bargraph

RMC 200

Control Output Cables

ControlLogix PLC.

Allen Bradley Analog Modules to RMC Conversion

30 deltamotion.com

Software

The example code was implemented on the operational demo described above to demonstrate how typical
motion instructions for the HYD02 module can be implemented to command an RMC200. For this example, 2
axes of control are created. Additional axes can be applied depending on users’ applications. Up to 50 are
available on the RMC200.

The logic is written with 2 individual tasks, as shown below.

These Tasks represent the existing
program that would typically be running
in the PLC.

These Tasks are examples that detail the
new connection to the RMC. This entire
Task is new, and would not exist prior to
conversion.

 A1. Addendum 1 – Example Code Functional Description

 deltamotion.com 31

In order to use the RMC, and emulate the motion instructions that are used for the 1756 motion modules, we
have created some basic AOI’s (Add on Instructions). These are intended to be examples and can be modified
and copied for individual applications. If additional AOI’s are desired, copy one of them, give it a new name,
then modify the logic to give the desired result. Typically, this would consist of changing the rung that defines
the condition for the “done” bit (DN).

Along with the AOI’s, there are new User Defined Data Types (UDT’s). These provide an easy way to associate
and manage the axes by their designated Axis names, or naming conventions. Again, like the AOI’s these are
examples and can be configured to meet the criteria of individual applications.

The AOI’s are created here, and the
naming convention ties the AOI to its
corresponding motion instruction within
the RMC.

These UDT’s help to translate the data
types between the PLC, and the RMC.

Allen Bradley Analog Modules to RMC Conversion

32 deltamotion.com

1756-HYD02 Example Logic - PLC

The example logic is written to simulate an operator controlling the Servo axes using either buttons or an HMI.
For this demo, a user defined tag structure has been created, which can be manipulated rather than a real-
world button or HMI. To use the tag, open up the Controller Tags and find the tag named “HYD02AxisCMDs“.

The tag is configured so that the most used commands are at the top, with the status and setup parameters
located near the bottom. The commands can be identified by the suffix CMD at the end of the tag name, i.e.,
“HYD02AxisCMDSs.ServosOnCMD“.

The code was first written with only the 1756-HYD02 module in use. It is operational code in a demonstration
environment providing some basic motion commands for the HYD02. This would be the case, if an existing
program has been in operation using the HYD02 module.

As an example, for how one might replace the HYD02 module with an RMC, code was later added to show
how the same HYD02 functions can be redirected from the existing code, to the RMC. This is an example only,

 A1. Addendum 1 – Example Code Functional Description

 deltamotion.com 33

it will be up to the user to modify the code for each specific application. A tag has been added to select
between either the HYD02 or the RMC. Let’s start with the PLC selected.

For this example, make sure the Boolean bit “.RMCSelectCMD” is set to a 0. This will allow the PLC to control
the HYD02 module, not the RMC200.

Initialize

The code demonstrates a typical sequence for powering up a servo system:

1. Turn power on for the system (MASR)
2. Attempt to clear alarms and faults (MAFR)
3. Enable the servo axes (MSO)

Using the control tag, set the “.ServosOnCMD “ bit to a 1, to turn the Servo’s on.

Set this bit HI

Set this bit LO

Allen Bradley Analog Modules to RMC Conversion

34 deltamotion.com

This will execute a simple routine within the MainProgram (S1_Initialize_HYD, starting at rung 3) that clears
faults and turns the Motion Servo On for each axis. This command is a one shot, so it will go low as soon as the
command has been received.

Reviewing the code, you will see the commands MASR, then MAFR, and finally MSO.

You will see the corresponding status bit “.ServosON” set to 1 that indicates both axes are “ON”.

Now that the axes are initialized and enabled, you will be able to command servo Motion.

Motion Axis Move (MAM)

This demo has been programmed to control 2 axes, in a simple coordinated manner. The 2 axes will utilize the
MAM instructions to move between the 2 programmed positions with in the command array. To achieve this,
a routine within the MainProgram (S2_MAM_Move_HYD) will command Motion for each axis.

Using the control tag, set the “.AutoModeCMD “ bit to a 1, to enable Auto Mode.

This will Enable the Auto mode within the PLC, allowing Auto functions to be performed, such as programmed
motion profiles, etc.

Set this bit HI

 A1. Addendum 1 – Example Code Functional Description

 deltamotion.com 35

Using the control tag, set the “.MotionStartCMD “ bit to a 1, to execute the motion profiles that are
programmed.

This will command the Auto Mode motion within the MainProgram (S2_MAM_Move_HYD), starting at rung 2).
This will start a basic state machine that moves 2 axes back and forth. This command is a one shot, so it will go
low as soon as the command has been received. The motion will continue until commanded to stop, using the
“.MotionStopCMD” bit.

Reviewing the code, you will see the state machine uses MAM commands to move the axes between 2
positions, with 2 seconds delay between each move.

As you can see the 2 axes are moving opposite of each other between 14” – 34”, and 34” – 14” respectively.

Set this bit HI

Allen Bradley Analog Modules to RMC Conversion

36 deltamotion.com

You can monitor the positional moves using the Trend feature. Open up the Trend “PLC_Auto_Move” to see
the axes movements.

Motion Axis Jog (MAJ)

The demo has been programmed to allow jogging for each of the axes. The 2 axes will utilize the MAJ
instructions to jog either plus or minus. A routine within the MainProgram (S2_MAJ_Move_HYD) will
command Motion for each axis.

Using the control tag, set the “.AutoModeCMD “ bit to a 0, to enable Manual Mode.

Set this bit LO

 A1. Addendum 1 – Example Code Functional Description

 deltamotion.com 37

This will Enable the Manual mode within the PLC, allowing Manual functions to be performed, such as
Homing, Jogging, Calibration, etc.

Using the control tag, set the “.JogPLusCMD “ bit to a 1, to move the axes in the positive direction. Setting it
to a zero will stop motion. Setting the “.JogMinusCMD “ bit to a 1, to move the axes in the negative direction.

This command is maintained, simulating holding a jog button. You will have to set to 0 to stop the motion.
When the PLC sees that there is no “button” pressed for a jog, the Motion Axis Stop (MAS) command will be
sent stopping the motion.

Set this bit HI

Allen Bradley Analog Modules to RMC Conversion

38 deltamotion.com

1756-HYD02 Example Logic - RMC

For RMC portion of the example code demonstrates how the PLC sends commands to the RMC200 rather than
using the PLC motion commands for the HYD02 module. Additional logic has been created to emulate the PLC
commands, and AOI’s have been created that will give a similar look and feel for the same functionality.

For this example, make sure the Boolean bit “.RMCSelectCMD” is set to a 1. This will allow the PLC to control
the RMC200, not the HYD02 module.

Initialize

As in the example above for the HYD02, the first thing one would do is to turn power on for the system, either
an electric servo drive, or an HPU for hydraulics. During a power up phase, the system would attempt to clear
alarms and faults, then enable the servo axes.

Using the control tag, set the “.ServosOnCMD “ bit to a 1, to turn the Servo’s on.

Set this bit HI

Set this bit HI

Jacob Paso
I changed this to emphasize that the code demonstrates this, so they don’t confuse it with the physical demo, which they don’t have.

 A1. Addendum 1 – Example Code Functional Description

 deltamotion.com 39

This will execute a simple routine within the MainProgram (S1_Initialize_HYD, starting at rung 3) that clears
faults and turns the Motion Servo On for each axis. This command is a one shot, so it will go low as soon as the
command has been received.

Reviewing the code, you will see the NEW AOI commands _97_Enable_Disable, then _04_Clear_Faults, and
finally _06_Stop_Closed_Loop. Notice the additional branches of logic in each rung that use these. See the
description for the AOI’s below (Add on Instructions (AOI’s)).

You will again see the corresponding status bit “.ServosON” set to 1 that indicates both axes are “ON”.

Now that the axes are initialized and enabled, you will be able to command servo Motion from the RMC.

Motion Axis Move (MAM)

As in the example above for the HYD02, the 2 axes will be controlled in the same simple coordinated manner.
However; the 2 axes will now use the new AOI instructions for the RMC, to move between the 2 programmed
positions within the command array.

Using the control tag, set the “.AutoModeCMD “ bit to a 1, to enable Auto Mode.

Allen Bradley Analog Modules to RMC Conversion

40 deltamotion.com

This will Enable the Auto mode within the PLC, allowing Auto functions to be performed, such as programmed
motion profiles, etc.

As before, use the control tag to set the “.MotionStartCMD “ bit to a 1, to execute the motion profiles that are
programmed.

This will command the Auto Mode motion within the MainProgram (S2_MAM_Move_HYD), starting at rung 2).
This will start the same basic state machine as before, that moves 2 axes back and forth. This command is a
one shot, so it will go low as soon as the command has been received. The motion will continue until
commanded to stop, using the “.MotionStopCMD” bit.

Set this bit HI

Set this bit HI

 A1. Addendum 1 – Example Code Functional Description

 deltamotion.com 41

Reviewing the code, you will now see the state machine uses the new AOI instructions to move the axes
between 2 positions, with 2 seconds delay between each move.

As you can see the 2 axes are still moving opposite of each other between 14” – 34”, and 34” – 14”
respectively.

You can monitor the positional moves using the Plot Manager within RMCTools. Open up the Plot “0-HYD02-
MAM” to see the axes movements.

Allen Bradley Analog Modules to RMC Conversion

42 deltamotion.com

Motion Axis Jog (MAJ)

New AOI instructions have been added for jogging the axes as well. The same routine within the MainProgram
(S2_MAJ_Move_HYD) will command the jogging motion for each axis as before; however the RMC will now
control them.

Using the control tag, set the “.AutoModeCMD “ bit to a 0, to enable Manual Mode.

This will Enable the Manual mode within the PLC, allowing Manual functions to be performed, such as
Homing, Jogging, Calibration, etc.

Set this bit LO

 A1. Addendum 1 – Example Code Functional Description

 deltamotion.com 43

Using the control tag, set the “.JogPLusCMD “ bit to a 1, to move the axes in the positive direction. Setting it
to a zero will stop motion. Setting the “.JogMinusCMD “ bit to a 1, to move the axes in the negative direction.

This command is maintained, simulating holding a jog button. You will have to set to 0 to stop the motion.
When the PLC sees that there is no “button” pressed for a jog, the “Stop Closed Loop”
(_06_Stop_Closed_Loop) command will be sent to the RMC stopping the motion.

Set this bit HI

Allen Bradley Analog Modules to RMC Conversion

44 deltamotion.com

Add on Instructions (AOI’s)

As stated above, in order to use the RMC, and emulate the motion instructions that are used for the 1756
motion modules, some basic AOI’s (Add on Instructions) have been created. These are intended to be
examples and can be modified and copied for individual applications. If additional AOI’s are desired, copy one
of them, give it a new name, then modify the logic to give the desired result. Typically, this would consist of
changing the rung that defines the condition for the “done” bit (DN).

The following AOI’s have been created as examples:

Each AOI executes as a state machine. The intent is to emulate the motion instructions the PLC used, so the
following status bits have been created:

• EN: Enable status Instruction has been called
• IP: In Process status Instruction currently executing
• DN: Done Status Instruction completed successfully
• ER: Error status An error has occurred

The design is intended to be generic in nature, so the basic code can be reused between all instructions that
the RMC is capable of receiving.

The AOI is written in ladder logic, with the bulk of the functionality residing in the “Logic” folder. This is the
logic that is scanned while the rung has the instruction enabled (true). If needed, use the “Prescan” or the
“EnableInFalse” routines to add the desired control response.

“Double click” the Logic folder under the AOI name to open up the ladder logic.

AOI Name

Logic: Main

Logic: Pre scan, when rung goes
true, and prior to Main Logic

Logic: Post Scan, after
the rung goes false

 A1. Addendum 1 – Example Code Functional Description

 deltamotion.com 45

Once open you will be able to modify to meet the specific application requirements for your program.

For more detailed information regarding AOI’s, refer to Rockwell’s knowledgebase and support
documentation.

AOI’s and PLC Comms

The AOI instructions rely on the same communications method to the PLC as described above in section 3.
Communications Overview, employing the cyclic I/O with the Sync register. It is necessary to create additional
UDT tags that allow the AOI’s to interface with the existing comm tags.

Additionally, as seen in the individual rungs, the AOI’s have both an Input and Output tag structure for the
instruction. You can pass variables to the instruction through the Input, and then use the result from the
instruction using the Output variables. The Input and Output variables use the same basic array structure that
the RMC commands use. Here is the basic command array that is native to the RMC for commands:

Allen Bradley Analog Modules to RMC Conversion

46 deltamotion.com

A UDT array was created for this example to move into the Input for the AOI’s. For example, it uses (0,0) for
the input to the AOI and (0,1) for the output of the AOI. Subsequent AOIs would use (1,0) and (1,1), (2,0) and
(2,1), etc.

The input parameters can be either hardcoded, or modified prior to the AOI. This example uses each method,
depending on the command.

 A1. Addendum 1 – Example Code Functional Description

 deltamotion.com 47

When the AOI updates the Output command variables, they will then be moved into an array that will work
with the RMC communication routine previously described.

Input Update

Output Update

PLC Comms Update

Allen Bradley Analog Modules to RMC Conversion

48 deltamotion.com

These additional rungs of code were created to update the communication routine, with each AOI instruction
triggering an RMC command request. This will update the Output image table for the Cyclic I/O as described
above.

Last updated: March 29, 2024

	Contents
	Overview
	Feature-Complete Alternative
	Connection Method
	Example Code

	1. Choosing an RMC
	2. Set up the Axes in the RMC
	3. Communications Overview
	Commands or User Programs
	Cyclic I/O Basics
	Cyclic I/O Data in the RMC

	4. Setting up the RMC for Communications
	Configuring the Ethernet IP Address
	Configuring the EtherNet/IP Properties

	5. Setting up the PLC for Communications
	Verifying the Cyclic Input Data from the RMC
	Verifying the Cyclic Output Data to the RMC

	6. Importing Tags from RMCTools for Cyclic I/O Data
	Exporting the Tags from RMCTools
	Importing the RMCTools Tags to ControlLogix

	7. Ladder Logic for Sending Commands
	8. Using the MSG Instruction
	Address Format
	Configuring the MSG Instruction
	Using the MSG Instruction

	9. PLC Motion Instructions Crossover
	Motion States Overview
	MASD – Motion Axis Shutdown
	MASR – Motion Axis Shutdown Reset
	MAFR – Motion Axis Fault Reset
	MSO – Motion Servo On
	MSF – Motion Servo Off
	MDO – Motion Direct Drive On
	MDF – Motion Direct Drive Off
	MAM – Motion Axis Move
	MAS – Motion Axis Stop
	MAH – Motion Axis Home
	MAJ – Motion Axis Jog
	MAG – Motion Axis Gear
	MCCP – Motion Calculate Cam Profile
	MAPC and MATC – Motion Axis Position Cam and Motion Axis Time Cam

	10. Homing
	11. Registration
	12. Support
	A1. Addendum 1 – Example Code Functional Description
	Example overview
	Hardware
	Software

	1756-HYD02 Example Logic - PLC
	Initialize
	Motion Axis Move (MAM)
	Motion Axis Jog (MAJ)

	1756-HYD02 Example Logic - RMC
	Initialize
	Motion Axis Move (MAM)
	Motion Axis Jog (MAJ)
	Add on Instructions (AOI’s)
	AOI’s and PLC Comms

